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Abstract—In this paper, the performance of a logarithmic spike
timing encoding scheme for gas sensor is analyzed. Utilizing the
non-linear (power law) relationship between tin oxide (SnO2)
gas sensor sensitivity and gas concentration, we designed and
fabricated a time domain readout circuit for a 4×4 SnO2 gas
sensor array. A unique pattern is generated by the readout
scheme for each gas, irrespective of the gas concentration. This
pattern is used as the signature of the gas. Gas identification is
achieved by matching the generated signature with pre-stored
reference signatures. The design was implemented in standard
CMOS technology. Reported experimental results demonstrate
the fabricated gas sensor exhibits the detection accuracy compa-
rable to computationally expensive classifiers.

I. INTRODUCTION

Many researchers have investigated Electronic Nose (EN)
systems with an array of gas sensors, but currently only
complex and expensive solutions are available in the market.
These EN systems utilize commercial gas sensors for sens-
ing and computer platforms for processing. Conventionally,
classifiers including the K nearest neighbors (KNNs), multi-
layer perceptron (MLP), radial basis function (RBF), Gaussian
mixture model (GMM) and probabilistic principal component
analysis (PPCA) are used to separate the uncorrelated data
from the sensor in order to achieve gas identification. However,
applications in distributed sensor networks, real-time in-field
measurements, hand-held devices and aerospace industries
require small-size, low-power and ’smart’ (possessing basic
or advanced computation ability) EN systems that does not
require computers for data processing. Besides, a major draw-
back of discrete gas sensors is either lack of selectivity or fixed
gas detection. An integrated gas sensor array, on the contrary,
can increase the selectivity and detect multiple target gases
with a single device [1] - [6].

We have previously reported a bio-inspired recognition
algorithm based on logarithmic spike timing with rank order
encoding for a 4×4 SnO2 gas sensor array [7]. The proposed
algorithm has significant advantage that enables nose-on-chip

solution. In this paper, we report the experimental results char-
acterizing the logarithmic spike timing circuit and evaluates
its performance. We have tested it with the fabricated SnO2

gas sensor array. Efficient gas discrimination results have been
demonstrated. The development of the encoding/identification
system and the experimentally tested results will be presented
in the following sections. Section II briefly introduces the log-
arithmic spike timing encoding scheme. Section III describes
the VLSI implementation. Section IV presents the experiment
results and characterizations of our scheme where section V
concludes the paper.

II. LOGARITHMIC SPIKE TIMING ENCODING SCHEME

The steady state change in the conductance (sensitivity) x
of a metal oxide gas sensor is defined by the ratio between
the steady state resistance Rs and the baseline resistance Ro
and it can be approximated by the power law relationship with
respect to gas concentration.

x ≈ Rs
Ro

= αCγ (1)

where α and γ are coefficients that depend upon the gas
and the sensing material. Considering a neural network with
spiking neurons such that, when gas j is sampled at time t = 0,
the input neuron i (connected to sensor i) will fire its first spike
at time tij given by:

tij =
log xij
γij

(2)

where xij is the steady state change in conductance of sensor i
and γij is the parameter fitted for odor j respectively. Imaging
the 4×4 integrated gas sensor array act as 16 input neurons.
The output spikes of the 16 neurons will constitute a spike train
with each spike time delay as tij . The interval ∆pq between
two individual spikes, i.e. the spikes generated by the pth and



the qth neurons, in this train can be calculated as:

∆pq = tp − tq

=
log xp
γp

− log xq
γq

=
logαp + γp logC

γp
− logαq + γq logC

γq

=
logαp
γp

− logαq
γq

(3)

The above equation indicates that ∆pq is independent of the
gas concentration C. In other words, the relative position of
spikes in the generated spike train is unchanged for each indi-
vidual gas, regardless the concentration variation. So one can
obtain a unique spike train pattern for each analyte gas. Simple
rank order recognition can thus be used for gas discrimination,
which can reduce the computational complexity compared to
regular pattern classification methods. In summary, one can
use a logarithmic transformation to convert the output of the
gas sensor array into spike trains and then use rank order
recognition to perform gas classification.

III. VLSI IMPLEMENTATION

The proposed identification scheme has been realized by
VLSI implementation. Fig. 1 shows major building blocks
of the resistance to logarithmic timing spike conversion to
implement the proposed algorithm. The sensor is modeled by

Fig. 1. Major building blocks of resistance to logarithmic timing spike
conversion

a resistor in the figure. It is converted to current given by:

Is =
Vr
Rs

(4)

This current is copied and fed into a PNP bipolar junction
transistor in order to generate a logarithmic output voltage
Vs:

Vs = VT ln
Is
IES

= VT ln
Vr

IES ·Rs

(5)

where VT and IES are the thermal voltage and reverse
saturation current. A similar circuit is designed to convert the

baseline resistance Ro to voltage Vo. In addition to this circuit,
a voltage shifter is used for the Vo generation to ensure that
Vo > Vs

A spike is then generated at the time t which is proportional
to the voltage difference between Vs and Vo.

IE · t = VT ln
Vr
IES

+ VT ln
Rs
R0

(6)

where t is the timing delay for a neuron to generate a spike
after the integration starts, or the time-to-the-first-spike (TFS).

By setting IE according to the value of γ from (1), (6) can
be rewritten as:

γ · t = X + Y ln
Rs
R0

t =
X

γ
+
Y

γ
ln
Rs
R0

(7)

where X and Y are constants determined by the circuit
parameters and are the same for all neurons. By characterizing
the fabricated gas sensor, we have discovered that the dynamic
range of γ is up to 62dB among the 3 target gases including
hydrogen (H2), ethanol and carbon monoxide (CO). However,
for each individual gas, the dynamic range of γ is only about
16dB. To reduce the complexity of our scheme, we normalize
the γ by taking the ratio between γ and the minimum γ across
the entire array of the gas. Setting IE to be a = γ/min.(γ),
the TFS of the sensor becomes:

t =
B

a
+
A

a
ln
Rs
R0

(8)

where A and B are constants depends on the circuit parameters
and min.(γ). The resolution of the current source depends on
the sensor characterization and it will be discussed in the next
section. It can be shown from (8) that the spike time interval
∆pq between neurons p and q can be expressed by:

∆pq = tp − tq

=
B

ap
+
A

ap
ln

(Rs)p
(R0)p

− (
B

aq
+
A

aq
ln

(Rs)q
(R0)q

)

= (
B

ap
− B

aq
) + (

A · lnαp
ap

− A · lnαq
aq

)

(9)

The above calculation shows that the gas concentration has no
effect to the spike train generated by the proposed circuit.

IV. EXPERIMENTS AND RESULTS

An integrated 4×4 tin oxide gas sensor array was designed
and fabricated using our in-house 5 µm 1-metal, 1-poly CMOS
process. Table I summarizes the gas sensor array characteri-
zation results including the values of baseline resistances and
aij for sensor i exposing to gas j.

In VLSI implementation, the current source IE for neuron
i is set to be aij and it is the only parameter that can be
varied in the circuit. The precision of IE directly affects the
performance of the proposed approach. As rank order is used
in this encoding scheme, our approach is relatively robust
because false alarm is only occurred when spikes drift causing
them to be swapped. The drift of spikes is mainly due to



TABLE I
GAS SENSOR ARRAY CHARACTERIZATION

Col1 Col2 Col3 Col4

Ro(kΩ)

Row1 22.3 240 26.95 17.08
Row2 24.94 117.88 16.81 13.37
Row3 22.61 233.9 16.59 18.14
Row4 23.47 155.02 29.37 19.85

ai1 (Hydrogen)

Row1 1.001 2.506 2.338 1.658
Row2 1.000 1.641 2.220 1.600
Row3 1.193 2.506 2.475 1.847
Row4 1.225 1.961 2.149 1.886

ai1 (Ethanol)

Row1 1.558 6.674 1.139 1.000
Row2 1.302 6.233 1.000 1.093
Row3 2.535 6.674 1.116 1.209
Row4 2.651 6.488 1.116 1.279

ai1 (CO)

Row1 1.000 2.778 2.111 1.667
Row2 1.444 2.055 1.389 1.555
Row3 1.278 2.778 1.389 1.778
Row4 1.722 2.389 2.222 1.889

the quantization error of IE in the proposed readout circuit.
Therefore, the resolution of IE has to be designed carefully.
A high resolution IE would enhance the robustness of the
scheme. However, this trades off with the chip area since 16
current sources are required for the entire readout circuit. The
drift of spike i can be expressed by:

δti = |t
′

i − ti|

=
B +A ln Rsi

R0i

IEi + δIEi
−
B +A ln Rsi

R0i

IEi

(10)

where δIEi is the error caused by the quantization error. Error
free identification can be ensured if the maximum drift of all
spikes , δtmax is less than half of the minimum time spike
interval ∆min of the spike train as illustrated in fig. 2.

time

IEq

0.5∆min

IEp

IEp + δIEp

δtp

Voq

Vop

Vsq

Vsp

t0 tp tq

Fig. 2. Drift

Assume tp and tq are the two closest TFS among the entire
spike train, ∆min is defined by

∆min = |tp − tq| (11)

Hence, δtmax is given by:

δtmax < 0.5∆min

< | B
IEp

+
A

IEp
ln
Rsp
R0p
− (

B

IEq
+

A

IEq
ln
Rsq
R0q

)|
(12)

By solving (10) and (12), we are able to compute δIEi. As
a result, we found that an 8-bit current source is enough to

provide a robust readout circuit. In the VLSI implementation,
however, a design margin is chosen for IEi with 10-bit to
further enhance the robustness because the current source is
the most critical component in the scheme.

The proposed readout scheme has been designed and fab-
ricated by Chartered 0.35µm 2-poly 4-metal standard CMOS
process with its microphotograph shown in Fig.3. The whole
chip occupies an area of 2.72×1.888 mm2 including the
bonding pads.

Fig. 3. Microphotograph of the proposed readout circuit

The circuit was tested with data obtained from the sensor
array. It was exposed to gases (H2, ethanol and CO) at different
concentrations. Fig. 4 shows the spiking sequence of CO at
increasing concentration. This shows our proposed scheme is
insensitive to concentration variation.

Fig. 4. Spike train of CO at 50, 100, 150ppm from top to bottom

Fig. 5 depicts the spike rank orders corresponding to the
sensor number in the array for the 3 analyte gases. Each tested
gas generates a unique rank order as described in the previous
subsections. The radius in the figure represents the sensor
number, while the number on the circumference represents the



rank of this spike in the spike train. For the 3 tested gases, 3
different rank order patterns can be obtained from the proposed
neuron array, which can be used for recognition of such gas.

Fig. 5. The rank order for different gases

Table II summarizes the correct detection rate of the
proposed approach and other classifiers. This rate generally
increases with the number of principal components (PCs).
However, the complexity of the algorithm also increases. In
our work, we have achieved a successful gas detection rate
that is comparable to classifiers with 4 PCs.

TABLE II
COMPARISION OF ACCURACY (%) BETWEEN THIS WORK AND OTHER

CLASSIFIERS WITH DIFFERENT PRINCIPLE COMPONENTS

No. of PCs 2 3 4 5 6 7 8
KNN 79.1 86.4 88.6 87.7 88.2 89.1 89.1
MLP 81.4 88.2 91.8 90.5 93.2 93.6 92.3
RBF 70.9 75.5 86.4 86.8 81.8 83.2 82.3

GMM 75.0 86.4 90.9 94.5 90.0 91.8 90.9
PPCA 70.5 81.8 84.5 84.1 79.1 79.1 79.1

This work 88.6

V. CONCLUSION

A logarithmic spike timing encoding scheme is presented in
this paper. It has been successfully tested with data from a 4×4
tin oxide gas sensor array. This encoding scheme can generate
unique spike sequence for different gases. The unique spike
sequence is independent on the gas concentration, thus can be
used to discriminate between different gases with concentra-
tion invariant result. Using a relatively simple structure, this
encoding scheme illustrates powerful computation capability
which is comparable to computer based classifiers.
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